Mostrando las entradas para la consulta crecen ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas
Mostrando las entradas para la consulta crecen ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas

viernes, 29 de enero de 2021

Los seres vivos crecen

 Cuando éramos niños, tuvimos como ciertas muchas cosas que no lo eran. Hoy sabemos que el ratoncito Pérez no colecciona dientes de niños, ni las cigüeñas los traen desde París. Tampoco existen pajaritos chivatos que cuenten a los mayores lo que hacemos. Nos dijeron hasta la saciedad que teníamos que comer si queríamos crecer. Eso era cierto. El crecimiento requiere aporte de material extra que sólo nos llega a través de la dieta.

viernes, 18 de enero de 2019

Los seres vivos crecen

Cuando éramos niños, tuvimos como ciertas muchas cosas que no lo eran. Hoy sabemos que el ratoncito Pérez no colecciona dientes de niños, ni las cigüeñas los traen desde París. Tampoco existen pajaritos chivatos que cuenten a los mayores lo que hacemos. Nos dijeron hasta la saciedad que teníamos que comer si queríamos crecer. Era cierto. El crecimiento requiere aporte de material extra que sólo nos llega a través de la dieta. 

sábado, 8 de julio de 2017

Los seres vivos crecen

Esta entrada es similar a otra que, con el título "Crecemos", publiqué hace unos días en el Paseante reflexivo. Puesto que ese Paseante se marcha, quiero traer aquí este texto, pues forma parte de un conjunto de cuatro, en los que comento nuestras actividades: nacer, crecer, reproducirnos y morir.



Cuando éramos niños, tuvimos como ciertas muchas cosas que no lo eran. Hoy sabemos que el ratoncito Pérez no colecciona dientes de niños, ni las cigüeñas los traen desde París. Tampoco existen pajaritos chivatos que cuenten a los mayores lo que hacemos. Nos dijeron hasta la saciedad que teníamos que comer si queríamos crecer. Eso era cierto. El crecimiento requiere aporte de material extra que sólo nos llega a través de la dieta.  

Los seres vivos crecen, pero ¿qué entendemos por crecer? No hay duda que cuando decimos “crecen”, interpretamos que los seres que desarrollan tal actividad, se encaminan hacia una plenitud y una madurez mofológica y fisiológica. En términos generales, decimos que crecen cuando aumentan de tamaño. Puesto que en biología siempre hay más de una forma de que se realice un proceso, también hay más de un modo de crecer. Un organismo pluricelular crece o bien porque aumenta el número de sus células integrantes, que mantienen su volumen inicial, o bien porque aumenta el tamaño de ellas, aunque no aumentan en número. 

Sea del modo que sea, los seres vivos pluricelulares crecen si tomamos como momento inicial de su vida el de su nacimiento. Los tamaños más grandes entre los seres vivos actuales se dan en especies vegetales.

ANIMAL ADULTO
La mayoría de seres tienen un crecimiento controlado, de manera que cuando alcanzan un determinado tamaño, definido para nosotros en términos estadísticos, ese proceso se detiene. Todos estamos acostumbrados a los tamaños estándar de los miembros de cada especie de seres vivos que conocemos y, aunque no tengamos medidos tales tamaños ni los recordemos con detalle, a algunos individuos los encontramos muy grandes o muy pequeños, cuando sobrepasan tales límites. Por eso hablamos de una vaca muy grande o un abeto muy pequeño, por citar dos ejemplos, aunque no sepamos sus dimensiones medias.

ÁRBOL ADULTO

Muchos seres pluricelulares cuando crecen, no sólo aumentan de tamaño, también sus células van diferenciándose adquiriendo capacidades y funciones singulares y diferentes. De este modo se pueden ir generando órganos con actividades especializadas. Mientras los seres se van desarrollando y adquiriendo estas cualidades, decimos que son formas juveniles, y consideramos que han alcanzado la madurez cuando alcanzan plenamente todas sus funciones, incluyendo la capacidad reproductiva.

lARVA

El crecimiento puede ser mediante formas intermedias, las larvas, que son voraces y que, tras un período de cambios, que se realizan con quietud, se transforman en adulto. En estos casos, los adultos generan huevos de los que nacen las larvas. Éstas sufren modificaciones morfológicas (metamorfosis), dando lugar a los adultos. Muchos insectos tienen larvas en sus ciclos biológicos, pero también hay vertebrados (ranas) que las tienen.

Siempre el crecimiento implica un aumento del propio material. Eso se realiza transformando en material propio el que se ha tomado en la comida o el sintetizado de nueva creación. En ambos casos, moléculas que no formaban parte del individuo que crece, pasan a formar parte de sus estructuras mediante reacciones metabólicas concretas.

HOJAS JUVENILES DE EUCALIPTO
En vegetales hay especies, como el eucalipto, con dos tipos de hojas, pues las formas juveniles del árbol presentan unas hojas con forma y color que no tienen nada que ver con las del árbol adulto. Se llama dimorfismo foliar y está relacionado con la edad del individuo.

En árboles y arbustos, aunque el crecimiento se detiene cuando se alcanza ese tamaño concreto que antes comentaba, no debemos considerar que hayan perdido su capacidad de crecimiento. Si se poda ese árbol o ese arbusto, las ramas volverán a crecer hasta alcanzar el tamaño anterior a la poda. Alcanzar esos tamaños y detenerse en esos momentos, son procesos regulados genéticamente.

ALOMETRÍA. EN HUMANOS, DIFERENTES PROPORCIONES CORPORALES SEGÚN LA EDAD

Por otra parte, puede ocurrir que el crecimiento no sea armónico. Existe una velocidad de crecimiento diferente en las diferentes partes del cuerpo, y a esto le llamamos alometría. En nosotros, los humanos, las piernas y los brazos crecen a unas velocidades diferentes al tronco y cabeza, por lo que los niños tienen unas proporciones corporales diferentes a los adultos. Este proceso diferencial se descubrió en el Renacimiento. Los pintores anteriores a esa época, al pintar al Niño Jesús no pintaban un niño, pintaban un hombrecito, pues le adjudicaban las proporciones de hombre adulto.

LARVAS DE RANA
De todas formas, vemos que existen múltiples estrategias en los seres vivos para alcanzar el estado adulto. Eso significa incremento de tamaño y cambios fisiológicos que, en general, reciben el nombre genérico de “crecer”.

Por otra parte, podría decir que en los seres vivos ha dos tipos de crecimiento: el indefinido y aquel que se detiene en un órgano cuando éste alcanza un tamaño determinado. Por ejemplo, en árboles, el porte general sigue un ritmo de crecimiento indefinido, mientras que sus hojas  lo tienen determinado hasta alcanzar un tamaño muy concreto. En nosotros, cejas, pestañas y vello corporal crece hasta alcanzar una determinada longitud. El pelo del cuero cabelludo y el de la barba sigue la pauta de crecimiento indefinido. 

En este caso, hay quienes llaman "cabello" al de crecimiento limitado en su tamaño, y "pelo" al de crecimiento indefinido.

Todos estos procesos relativos al crecimiento están regulados genéticamente y son objeto de estudio, pues algunas pautas nos resultan completamente desconocidas.
    

miércoles, 29 de junio de 2016

Semejanzas y frecuencias

Al pasear por el campo o por caminos más o menos rurales, podremos encontrarnos con poblaciones de ortigas situadas en taludes o al pie de tapias o de muros. Si nos detenemos a mirarlas con atención, veremos que junto a esas ortigas hay otras hierbas, otras plantas, parecidas a ellas, pero inocuas. Suele ocurrir así, que las masas de ortigas están siempre (es un decir) acompañadas de ese cortejo de plantas inofensivas, pero parecidas a ellas.

LA PLANTA MODELO. LA ORTIGA
¿Tiene esto alguna causa, alguna explicación biológica? Sí que la tiene. Se llama mimetismo batesiano, en honor a H. W. Bates, el científico británico que, en el siglo XIX, describió este comportamiento. Consiste en que varias especies inofensivas se parecen entre sí y a otra que sí es peligrosa o de sabor repugnante. Con esto se consigue eludir la acción agresiva de los predadores. En el caso que comento, la especie agresiva, la modelo, es la ortiga y las demás crecen a su lado careciendo de agresividad, pero simulando poseerla. Lo que ocurre es que si un predador, un herbívoro en este caso, ingiere una hoja de ortiga, se sentirá dañado. Fijará en su memoria el patrón de la hoja dañina y no volverá a intentar comer ninguna planta con ese aspecto. Ahí tenemos el efecto de protección de la ortiga hacia sus plantas parecidas, que se cobijan en su vecindad de modo que casi no crecen en ninguna otra parte.
BRUNELLA  (IMITADORA)

No digo que no crezcan, claro que sí crecen, pero con restricciones, pues cuando las semillas son esparcidas a voleo, llevadas por el viento, caen en todas partes y, si se dan las condiciones apropiadas, germinan y crecen. Es entonces cuando se puede notar el efecto protector de la vecindad de las ortigas. Si las hay donde estas plantas crecen, los herbívoros, caracoles y larvas en su mayoría, se habrán marchado del lugar y las plantas inocuas de las que hablo podrán crecer tranquilamente al amparo del modelo que imitan, la ortiga. Si no hay ortigas, las plantas son comidas, dándonos la sensación de que allí no han crecido, lo cual no deja de ser cierto.

PARIETARIA  (IMITADORA)

También hay casos similares en animales, en los que formas inocuas imitan algún modelo con sabor desagradable.

Se supone que, evolutivamente, primero apareció el comportamiento tóxico o agresivo de la especie modelo, la imitada. Otras especies, compartían hábitat con ella y eran inocuas. Pero si por mutación adquirieron alguna similitud con la planta modelo, encontraron que la selección natural las favorecía. A veces, tal favor llegó a provocar que las formas imitadoras fuesen las únicas capaces de alcanzar el estado reproductor, formando flores y las consiguientes semillas. Repito, si tales morfologías imitadoras estaban causadas por factores de naturaleza hereditaria, los genes responsables fueron pasando a las generaciones siguientes, de modo que en cada generación aparecieron las formas imitadoras de modo repetido. Hoy, todos los miembros de estas especies poseen las morfologías capaces de generar la confusión de los predadores.

MENTA  (IMITADORA)

Insisto en que esta disposición la podemos ver en cualquier camino o campo en que haya ortigas. Las especies acompañantes crecen a su amparo y las veremos sin mayor dificultad por nuestra parte.

No obstante, las cosas pueden no ser tan sencillas. Hay un factor muy a tener en cuenta y son las frecuencias de la forma modelo (la ortiga en este caso) y las imitadoras. Entre las imitadoras hay menta, brunela, parietaria, echium y otras de la misma familia que la ortiga, Labiadas, y de morfologías muy semejantes, como vengo diciendo.
PARIETARIA  (IMITADORA)

Todo el efecto beneficioso del mismetismo batesiano se consigue cuando el herbívoro ingiere una ortiga antes que ninguna otra planta. Es decir, la probabilidad de ingerir la planta tóxica ha de ser más alta que la de ingerir una inocua. Esto ocurre cuando la ortiga es la especie más frecuente en ese lugar. Pero para que los predadores aprendan, las ortigas han de ser comidas. Al menos cada herbívoro la agrede una vez y así aprende desencadenándose en él el reflejo condicionado de no repetir mordisco a esa planta (ni a las formas imitadoras). Quiero advertir que la ortiga sufre la acción agresora del predador. En estos casos, las formas imitadoras quedan resguardadas. Tal dinámica puede hacer que, con el tiempo, las ortigas vayan disminuyendo su presencia en ese lugar, como así ocurre.

Cuando haya menos ortigas, disminuirá la probabilidad de que sean ingeridas en primer lugar y las formas inocuas comenzarán a ser depredadas por falta de abundantes modelos agresivos. No siendo agredidas las ortigas debido a la cantidad de formas inocuas, volverán a ser frecuentes y se restablecerá un equilibrio que será estable cuando haya más ortigas que formas inocuas, amparadas bajo la ayuda de su morfología agresiva.

ECHIUM   (IMITADORA)

Es este un modelo dinámico frecuente en la naturaleza, en el que las formas favorecidas no lo son por motivos inherentes a ellas mismas. Ocurre algo similar en el mundo animal con las relaciones predador-presa. Cuando aumentan los predadores, disminuyen las presas. Esto desencadena una disminución de predadores con el consiguiente aumento de presas. Y así van alternando las frecuencias relativas de una y otra especie.

En estos casos la selección natural no protege formas concretas, más bien en estas comunidades de especies interrelacionadas, se favorecen las formas menos frecuentes. Se genera un equilibrio dinámico que conocemos como “selección dependiente de las frecuencias”.


viernes, 5 de julio de 2019

Malas hierbas

En general, llamamos mala hierba a cualquier vegetal no deseado que aparece en un cultivo y que, por tanto,  compite con los vegetales cultivados, que se encuentran allí por criterios humanos. Es conveniente eliminarlos. Indudablemente, se trata de un concepto relacionado con la producción del terreno en que está el cultivo. El nombre peyorativo hace referencia a su implicación en la merma de productividad. 

jueves, 16 de enero de 2014

CARACTERÍSTICAS DE LOS SERES VIVOS: (II)...CRECEN...

Los seres vivos crecen, pero ¿qué entendemos por crecer? No hay duda que al decir eso, queremos indicar que aumentan de tamaño. Como en biología hay más de una forma de que se realice algo, también hay más de un modo de crecer. O bien porque aumenta el número de células integrantes de un organismo, o bien porque aumenta el tamaño de las células, cuyo número no se altera.
SERÄN ADULTOS
Sea del modo que sea, los seres vivos crecen si tomamos como momento inicial de su existencia el de su nacimiento. Los tamaños más grandes entre los seres vivos actuales se dan en especies vegetales. La mayoría de seres tiene un crecimiento controlado, de manera que cuando alcanzan un determinado tamaño, el proceso se detiene. Todos estamos acostumbrados a los tamaños estándar de los miembros de cada especie que conocemos, y aunque desconocemos esos tamaños, de modo instintivo a algunos individuos los encontramos o muy grandes o muy pequeños cuando sobrepasan tales límites. Por eso hablamos de una vaca muy grande o un camelio muy pequeño, por citar dos ejemplos.
Los seres, al crecer, no sólo aumentan de tamaño, también sus células van diferenciándose adquiriendo capacidades diferentes y generando órganos con funciones especializadas. Mientras los seres van adquiriendo estas cualidades, decimos que son formas juveniles, y consideramos que han alcanzado la madurez cuando alcanzan la capacidad reproductiva.
RENACUAJOS. FORMAS
LARVARIAS DE RANAS
El crecimiento puede ser mediante formas intermedias, las larvas, que son voraces y que, tras un período de transformación que se realiza con quietud, se transforman en adulto. En estos casos, los adultos generan huevos de los que nacen las larvas. Éstas sufren cambios morfológicos (metamorfosis), dando lugar a los adultos. Muchos insectos tienen larvas en sus ciclos biológicos, pero también los anfibios (ranas, sapos) las tienen. En vegetales hay especies, como el eucalipto, con dimorfismo foliar,  en las que las formas juveniles del árbol presentan unas hojas con formas y color que no tienen nada que ver con las del árbol adulto.
 HOJAS JUVENILES DE EUCALIPTO
RAMAS JUVENILES DE EUCALIPTO









En árboles y arbustos, aunque el crecimiento se detiene cuando se alcanza ese tamaño concreto que comentaba, no debemos considerar que se haya perdido su capacidad de crecimiento. Cuando se poda ese árbol o ese arbusto, volverán a crecer hasta alcanzar el tamaño anterior a la poda. Alcanzar esos tamaños y detenerse en esos momentos, son procesos regulados genéticamente.
ALOMETRIA EN HUMANOS
Por otra parte, también puede ocurrir que el crecimiento no sea armónico cuando contemplamos el modo en que se realiza en la totalidad del cuerpo. A veces, existe una velocidad de crecimiento diferencial en sus diferentes partes, y a esto le llamamos alometría. En nosotros, los humanos, las piernas y los brazos crecen a unas velocidades diferentes al tronco y cabeza, por lo que los niños tienen unas proporciones corporales diferentes a los adultos. Este proceso diferencial se descubrió en el Renacimiento. Los pintores anteriores, al pintar al Niño Jesús no pintaban un niño, pintaban un hombrecito, pues le adjudicaban las proporciones de hombre adulto.
 FICUS CRECIDO Y BIEN
ANCLADO EN EL SUELO
De todas formas, existen múltiples estrategias en los seres vivos para alcanzar el estado adulto. Esos procesos, en la mayoría de los casos significan incremento de tamaño y cambios fisiológicos que, en general, reciben el nombre genérico de “crecer”. 
Un proceso inherente a todos los seres vivos y del que se beneficia el mismo individuo que crece..

viernes, 29 de septiembre de 2017

Los seres vivos se reproducen

Ya he comentado que los seres vivos nacen y crecen. Toca hablar de la tercera función de los seres vivos, "se reproducen", para terminar con la última, claro, mueren.
Vayamos, de nuevo, al diccionario de la Real Academia de la Lengua. Nos dice que, aplicado a seres vivos, reproducirse es “engendrar y producir otros seres de sus mismos caracteres biológicos”.


Yo añadiría que los mismos caracteres morfológicos aparecen en las mismas fases biológicas de padres e hijos, pues hay muchos hijos que nacen con morfologías muy diferentes a la que tendrán en estado adulto. Esos estados, transitorios, se llaman larvarios y a los individuos, larvas. También en vegetales hay morfologías juveniles que no se asemejan a las adultas, como es el caso de los eucaliptos.

En general, conocemos como progenitores a quienes se reproducen, e hijos a sus descendientes. Y no tenemos duda en que progenitores y descendientes forman dos generaciones sucesivas, diferentes, y que solo se solapan en razón de la reproducción que las vincula. Como hay parentesco entre reproductores y descendientes, también es correcto hablar de padres, al referirnos a los reproductores que ya tienen descendientes, a quienes conocemos como hijos suyos.

SÍMBOLOS DE PATERNIDAD DESDE EL MUNDO CLÁSICO
Padres, hijos, progenitores, descendientes, reproductores, nombres diferentes para designar a los mismos sujetos de un proceso biológico importante, muy importante. Tan fundamental, que un dato clave que tenemos en cuenta para indicar que un individuo está adaptado a un determinado ambiente, es que en ese ambiente, el individuo en cuestión es capaz de tener hijos fértiles.

Es curioso que al hablar de adaptación, impliquemos tres generaciones: aquel en quien fijamos nuestra atención para decir que está adaptado, su hijo y su nieto, pues el hijo también ha de ser fértil. ¿Por qué se hace así? Yo lo veo muy claro, y voy a intentar explicarlo aquí y ahora.

UN NUEVO SER DE LA GENERACIÓN
SIGUIENTE
Los seres vivos nacen y crecen, eso por supuesto, pero son los mismos individuos que protagonizan esas actividades los que se benefician de ella. No ocurre eso con la reproducción, pues a un individuo le resulta indiferente reproducirse o no hacerlo. ¿Quién se beneficia de ella? Sin duda alguna, la población de la que forma parte y, en último extremo, la especie a que pertenece. La permanencia de poblaciones en determinados territorios, configurando el área de distribución de las especies, determina la necesidad inexcusable de que se reproduzcan los miembros que la componen. Es el único mecanismo para que una generación dé lugar a la siguiente y, de este modo, se estará produciendo la continuidad de la presencia de unos individuos en lugares determinados. En mi opinión, ese es el valor biológico de la reproducción, y quiero señalar que no indico ningún tipo concreto en que ésta pueda realizarse. Si hay diversos modos que tienen los seres vivos para reproducirse, (sexual, asexual, alternante, etc.) y hay especies vivas que los utilizan, esto será porque tales métodos son útiles para cada una de ellas.

Para las especies y las poblaciones, lo importante es no extinguirse y, mientras la reproducción se realice de modo adecuado, la extinción, como peligro biológico, está conjurada.

MIEMBROS DE UNA NUEVA
GENERACIÓN

La historia de la vida en apasionante. Nadie discute que se originó una sola vez y que, desde entonces, no ha ido más que diversificándose, generando nuevas especies, y ampliando su área de distribución. Es posible encontrar muchos datos acerca de este proceso cuando se estudian los estratos geológicos, y cada vez sabemos más sobre este tema. Quiero hacer notar que no he dicho “nueva vida” y sí he hablado de “nuevos seres” como producto de las actividades reproductoras. La vida, como indicó Pasteur, no se crea, simplemente se transmite (Omnis vivo ex vivo). Si  los descendientes son seres vivos es porque sus padres les han transmitido la vida por medio de los gametos. Hay nuevos seres que comparten la misma actividad biológica que conocemos como “Vida”.

OTRA NUEVA GENERACIÓN

Tenemos tan metido en nuestro instinto el afán de supervivencia de la especie, que siempre nos repugna cuando a consecuencia de una catástrofe, mueren mujeres y niños. Dejando de lado razones humanitarias o morales, la biología también explica ese rechazo. Las mujeres son fundamentales para la reproducción. Los niños ya son la generación siguiente. No son posibilidad, son realidad y esa catástrofe la ha segado.

Si hoy encontramos seres vivos en cualquier hábitat, o si hay seres vivos con cualquier estructura y modo de vida, es debido a que, desde que la vida se originó, los seres que la poseían fueron reproduciéndose, ganando en complejidad y colonizando nuevas áreas en las que poder vivir, ampliando sus áreas de distribución. La reproducción siempre fue el eslabón que unió las diferentes generaciones en esta cadena de seres vivos.

El único eslabón, de ahí su importancia biológica.

viernes, 1 de febrero de 2019

Los seres vivos se reproducen

Ya he comentado que los seres vivos nacen y crecen. Toca hablar de la tercera función de los seres vivos, "se reproducen", para terminar con la última, claro, mueren.
Vayamos, de nuevo, al diccionario de la Real Academia de la Lengua. Nos dice que, aplicado a seres vivos, reproducirse es “engendrar y producir otros seres de sus mismos caracteres biológicos”.

viernes, 14 de julio de 2017

Hablando de seres vivos

Me gustaría hablar de nuevo aquí sobre seres vivos, y voy a hacerlo. Hablar de los seres que viven, que tienen vida. Pero, ¿qué es vida? Es una pregunta que ha tenido diferentes respuestas a lo largo de la historia. Hubo un tiempo en que se pensó que era un soplo. Según el Génesis, Dios hizo una figura de barro, sopló sobre ella y ésta adquirió vida. Hoy han cambiado mucho nuestros conocimientos y conceptos sobre este tema.

He dicho muchas veces que tenemos ambigüedad al utilizar esta palabra. Porque “vida” puede ser la historia biológica de alguien (la vida de fulano); también entendemos como tal el modo de transcurrir el tiempo por parte de alguien (llevó una vida…); o, en otro plan, puede ser la duración estimada de un aparato caduco (esta bombilla tiene una vida de tantas horas). Pero también, vida es una actividad esencial mediante la que actuamos los seres que, por tenerla, merecemos el calificativo de seres vivos. En este plan, vida es la energía de los seres orgánicos. 

Ser vivo

Estos conceptos son de este tiempo. En el Renacimiento, se sabía que los estados de la materia son sólido, líquido y gaseoso. El paso de un estado a otro era simple y sencillo: evaporación, ebullición, solidificación eran procesos reversibles conocidos por los hombres de ciencia. También los seres vivos morían en un instante y, al igual que el resto de cambios conocidos, se podrían producir en ellos los movimientos inversos. Los seres inertes podrían adquirir vida. Había que conocer cómo, la fórmula de producirla, pero el hecho era real y constatable. La idea de la generación espontánea era admitida en general, existiendo múltiples fórmulas para conseguir la producción de animales: de ratones, arañas, lombrices y un largo etcétera. Según esta suposición, la vida era una actividad susceptible de ser creada en condiciones adecuadas.

Seres vivos

Fue a partir del siglo XVII cuando se empezó a dudar de esta hipótesis. Redi, Spallanzani y Pasteur demostraron, cada uno en su tiempo, la inexactitud de esta hipótesis y Pasteur resumió su descubrimiento con el aforismo omnis vivo ex vivo. Todo ser vivo procede de otro ser vivo. También, como consecuencia lógica de esto dijo que “la vida no se crea, simplemente se transmite”. Todo esto generó una nueva visión acerca de los seres vivos y su mundo. 

Tal vez sea posible escapar de la definición de “vida” para quedarse en la de “ser vivo”, pero volvemos a lo mismo. ¿Realmente sabemos qué es un ser vivo? Sí y no. Me explico. Sabemos de lo que hablamos cuando nos referimos a ellos. No es una metáfora, no. Es algo muy concreto y lleno de significado. Incluso adjudicamos características de ser vivo a algo, un movimiento ideológico, por ejemplo, cuando decimos de él que está vivo o muy vivo. Queremos indicar que se renueva, que se expande, que se mueve.
 
Ser vivo

Pero hay muchos seres vivos, mucha diversidad entre los seres vivos. La idea de los científicos es que la vida, tal como la entendemos hoy, se inició una sola vez. Tal vez antes hubo moléculas con características prebióticas, pero la vida que disfrutamos y de la que participamos todos, tuvo un solo inicio hace miles de millones de años. Darwin nos explicaría el origen y el mantenimiento de la diversidad actual, pues lo cierto es que todos tenemos un mismo origen y sirve de muestra el nivel bioquímico.

Todos guardamos nuestra información genética en los ácidos nucleicos. Recuerdo, hace años, cuando se estaba dilucidando el código genético. Se hacía en laboratorio, claro. No faltaron quienes dijeron que después de dilucidado, habría que deducir qué claves correspondían a vegetales y cuáles a animales. A todos nos pareció lógico. La sorpresa, la gran sorpresa, llegó cuando se comprobó a ese nivel bioquímico todo era similar, tanto en el mundo animal como en el vegetal y en bacterias. ¿Qué quiere esto decir? Pues sencillamente, que ese camino de consolidación como seres vivos fue un camino que recorrimos juntos, que es una historia común. Luego, más tarde, vendrían las diversificaciones.

Seres vivos

También tenemos común el modo de duplicación de los ácidos nucleicos y los enzimas que intervienen en el proceso. Es también común el número y la naturaleza de los aminoácidos, los componentes de las proteínas y su mecanismo de síntesis. 

Si embargo, soy consciente que estoy diciendo cosas, pero no digo qué es un ser vivo, ni qué es la vida. Desde niño, ya en la escuela, aprendí que los seres vivos “nacen, crecen, se reproducen y mueren”. También que las funciones de los seres vivos son “de relación, de nutrición y reproducción”. Con anterioridad hablé aquí de mi modo de entender eso de que los seres vivos nacen y crecen. Pero ahora, quiero seguir comentando cómo entiendo esas funciones propias de los seres vivos. Comunes a todos.

En clase, para hacer ver a mis alumnos la complejidad del mundo de los seres vivos, les aconsejaba que imaginasen un árbol, un liquen, una planta y un mamífero. ¿Qué compartimos? Estamos vivos, tenemos la información biológica encerrada en ADN, compartimos el modo de transcripción del mensaje genético. Luego, cada cual con sus genes, que se adapte a su ambiente, que crezca y se reproduzca.

Hablaremos de esto…

viernes, 18 de mayo de 2018

Origen de una población


Por regla general, podemos pensar que una especie, sea animal o vegetal, está adaptada a un terreno concreto, con sus condiciones ecológicas concretas, cuando sus miembros son capaces de vivir en él y reproducirse generando descendientes fértiles. Lo que he comentado más veces, la condición de que los descendientes sean fértiles asegura la capacidad de perpetuarse por sus propios medios, sin necesidad de recurrir a ayudas exteriores.

ÁREA DE DISTRIBUCIÓN DEL SAPO
Bajo esta definición, en un gran territorio geográfico, el área de distribución de una especie nos indica el área ecológica en la que dicha especie está adaptada. Fuera de ella, las modificaciones ambientales son de tal magnitud que los individuos ya no están adaptados a ellas. A veces, en los límites de las áreas de distribución, los individuos son capaces de vivir, pero no de reproducirse. Quienes tienen aficiones a la horticultura, saben que a veces consiguen que una determinada planta consiga crecer en un ambiente adverso, pero no produce ni flor ni fruto. Es capaz de vivir, pero no se reproduce. Algo similar ocurre con animales en cautividad, como en los zoológicos.

Pensemos en esos individuos dentro de su área de distribución. Aunque disponen de total capacidad de movimiento, en caso de animales, o sus semillas se pueden dispersar por todas partes, si son vegetales, únicamente aquellos que se encuentren dentro del área, estarán adaptados a esas condiciones ecológicas y podrán crecer en la forma requerida. No pensemos que las semillas no se dispersan fuera de las áreas geográficas de distribución. Llegan muy lejos, pero no siempre sobreviven. Los animales o mueren o retroceden.

ÁREA DE DISTRIBUCIÓN DE LA ENCINA

Supongamos estamos paseando por el monte y nos encontramos una población de cualquier especie. Podemos preguntarnos cómo llegaron los primeros individuos a esos terrenos. Eso es algo que puede ser intrigante y siempre un reto que se plantea al investigador. El origen de una población. Pueden ser muchos orígenes y muy diversos.

Pensemos en poblaciones continentales en territorios con islas próximas. Tal vez, en alguna ocasión el viento llevó semillas a la isla y algunas cayeron en terreno apropiado. Unas semillas, pocas, procedentes de esa población originaria pudieron germinar y generar individuos adultos. La población originaria tendría su variabilidad genética, no sabemos cuál, pero si han llegado unas pocas semillas lo más probable es que no llevasen consigo toda la variabilidad existente en la población originaria. Las semillas germinan, crecen y se multiplican. Originan una población. Ocurren varias cosas.

FRUTO DEL ARCE

Esta población nueva procede de la anterior, sí. Esta población nueva sufre lo que se llama “efecto fundador”, que nos indica que aunque procede de otra, ha perdido mucho de la variabilidad génica que poseía la originaria. Esta variabilidad requiere grandes números de individuos para estar representada por completo, y no es lo que ha ocurrido con estos pocos fundadores de la nueva. Se ha perdido variabilidad, y los alelos presentes pueden estar en frecuencias diferentes a las que tenían originariamente. Todo ha sido cuestión de azar y se plantea la supervivencia de esos individuos invasores. Cuidado, hablo de supervivencia, que sería un éxito evolutivo, aunque la morfología se pierda o se altere. En estos casos, la morfología no es tan importante como la supervivencia de la nueva población.

Si han sido pocos los individuos que han llegado, dejando aparte la pérdida de variabilidad génica, existe la necesidad de adaptación al nuevo territorio. Pero si han sido pocos los individuos llegados, en vegetales a veces una sola semilla, o pocas en un solo fruto, los descendientes tendrán un elevado nivel de consanguinidad, con los efectos adversos que ese nivel puede conllevar.

FRUTO DE OLMO

Si se superan todas estas situaciones adversas, puede generarse una rápida expansión de los componentes de la nueva población, pues en principio pueden no existir en esa nueva zona especies limitantes a ellos. Darwin indica en “El origen de las especies” que, debido a esta ausencia, los miembros de la especie nueva pueden comportarse como especies invasoras. Fijémonos que en nuestro país, ahora mismo, todas las especies invasoras son exóticas que no tienen predadores biológicos en esta zona.

FRUTO DE CLEMATIS, TREPADORA DE JARDIN
Si la nueva población tiene éxito, es decir, ocupa un territorio y se reproduce generando hijos fértiles, comenzará una historia evolutiva propia. Con esto quiero decir que, con el tiempo, acumulará su propia variabilidad. La nueva variabilidad puede no parecerse a la existente en la población de la que procede, pues las condiciones ecológicas han cambiado y es muy probable que también sean otros los efectos de la selección sobre ella. Tal vez en esta nueva zona la selección favorezca combinaciones génicas que desfavorecía en la zona inicial, tal vez debido a que exista una nueva variabilidad.

Este proceso que comento puede no ser un suceso aislado y repetirse de modo recurrente en el tiempo. A veces, en estos casos hay intercambio de individuos entre las poblaciones  (la originaria y la derivada), generando unos fenómenos auspiciados por estas migraciones en ambas direcciones.

Pero tampoco pensemos en hechos aislados, en todas las generaciones se dispersan semillas de modo aleatorio. Pueden caer en terrenos apropiados y generar la aparición de nuevas poblaciones. Si caen en lugares inapropiados, todo queda en nada, pero este mismo dato nos indica que la tendencia a la expansión poblacional es constante. Otra cosa es que cada vez sea un éxito.



viernes, 11 de octubre de 2019

Drosophila, el significado de un nombre


La mosca de la fruta o del vinagre, ha aportado mucha información a los estudios de la herencia biológica. Su nombre significa "Amante del amanecer" y voy a explicar su causa.

jueves, 9 de enero de 2014

CARACTERÍSTICAS DE LOS SERES VIVOS. (I) ...NACEN...

Recuerdo que, ya en la escuela, aprendimos que los seres vivos "nacen, crecen, se reproducen y mueren". Tal vez nunca nos hemos detenido lo conveniente para cavilar acerca del sentido de este aforismo. Por eso ahora quiero comentar esas actividades biológicas. Tal vez sea bueno hacerlo.
En Biología es difícil que existan definiciones aplicables a la
HAN NACIDO
totalidad de seres vivos. Es lo que ocurre cuando queremos indicar en qué consisten algunas actividades vitales. Por ejemplo, "nacer".
Si recurrimos al diccionario de la RAE a consultar el significado de este término, nos dirá que nacer consiste en "salir del vientre materno". Es cierto, pero se está aplicando la definición exclusivamente a mamíferos. Otra acepción que ofrece nos dice que nacer es "salir del huevo", muy acertada cuando se aplica a animales que tienen este medio de reproducción, como aves, peces así como muchos invertebrados como insectos, crustáceos y arácnidos. Tratándose de vegetales nos dice que "nacer" consiste en empezar a "salir de la semilla". También estamos conformes con esta definición, aunque volvemos a encontrar que no es de aplicación a la totalidad de vegetales, pues muchos de ellos no se reproducen por semilla.


HA NACIDO
Es curioso que las tres definiciones hablan de "salir". ¿Qué nos puede indicar el verbo utilizado en estos casos? Podemos pensar que "salir" nos habla de en un nuevo ser, el que nace, que "sale" al mundo y abandona el lugar en que se desarrolló, donde llevó a cabo su proceso embrionario, para comenzar a vivir su historia propia como ser autónomo. Para mi forma de pensar, esa autonomía adquirida es lo que confiere un valor especial al "salir" y por tanto, al "nacer". Ha aparecido un nuevo ser completamente autónomo y con capacidad para serlo. Y todos los seres vivos “nacen” de una u otra forma, es decir, tienen un principio.
Estas definiciones están restringidas a los que nacen como consecuencia de cualquier proceso de reproducción sexual, pero ¿qué decimos de los seres, animales y vegetales, que aparecen como consecuencia de medios asexuales?
ESQUEJES, NUEVOS SERES
 POTENCIALES
Hablaré de esos procesos en otras ocasiones, pero ahora pensemos en uno sencillo, conocido por todos, como es la reproducción por escisión, o por esquejes, que aunque muy utilizada por el hombre, no es un proceso artificial. Más bien es un proceso común entre determinadas especies en la Naturaleza. Imaginemos que en un vendaval se desprende una rama de un sauce, por ejemplo, o de una mimosa. Esa rama cortada está destinada a desecarse y morir si no llega a un terreno barroso, de modo que quede semienterrada en él. En caso de caer entre barro, es posible que la rama enraíce comenzando a tener vida propia. ¿Decimos que ha nacido? Yo no lo diría, pero sí que hay un nuevo ser biológicamente autónomo. Lo mismo ocurre con cualquier planta generada a partir de un esqueje. Se me hace difícil decir que ha nacido, pero hay un nuevo ser.
HA NACIDO
En organismos que viven formando colonias, caso de corales o fresas, por ejemplo, es difícil decir cuándo nace cada individuo y tal vez el concepto de "nacer" se limite al ser primitivo, fundador de la colonia, mientras que sus nuevos aparecen por procesos alternativos al nacimiento.
Los seres vivos, de un modo u otro, nacen. Los modos son muy diversos y si bien hay casos en los que se puede hablar acertadamente de nacimientos, en otros el término queda más ambiguo. Pero siempre podemos decir que los seres vivos tienen una historia autónoma, con un principio concreto datable en el tiempo. En ese momento está su origen como ser, aunque a veces no podamos hablar de nacimiento.



sábado, 14 de enero de 2017

Los conceptos en ciencia

Para muchos, los descubrimientos son hitos fundamentales en el avance científico. Esta idea está muy afianzada. No obstante, para muchos el desarrollo científico está en el afianzamiento de los conceptos, que muchas veces se produce gracias a los descubrimientos.



Este es un debate que viene de lejos. El dilema entre descubrimiento y concepto. El descubrimiento saca a la luz algo que estaba oculto, pero que ya existía, por ejemplo la existencia de células o los procesos hereditarios en seres vivos. El concepto aparece como consecuencia de una actividad del pensamiento, cuando se relacionan muchos datos diversos relacionados y se obtiene una idea general aplicable a casos concretos que pueden explicar las situaciones implicadas. El concepto es un producto mental y se configura gracias a los datos obtenidos en los descubrimientos. Con ellos, se afianza o se desecha. Por ejemplo, el concepto de la fuerza vital (el vitalismo), fue rechazado después de que diversos descubrimientos invalidaran los principios en los que se basaba tal idea. Otro tanto ocurrió con el concepto del flogisto, supuestamente presente en los objetos combustibles.

HAY DESCUBRIMIENTOS QUE AFIANZAN CONCEPTOS

A veces, los conceptos están encerrados en fórmulas y leyes que representan el trabajo de muchos investigadores. Los descubrimientos se basan en conceptos previos y cuando no se dispone de ninguno capaz de explicar lo que se ha descubierto, decimos que tal hecho se ha adelantado a su tiempo. Es lo que ocurrió con los descubrimientos de Mendel, que los interpretó e intentó explicarlos suponiendo unos procesos formadores de gametos (segregación), que no se podían sustentar en ningún concepto existente. No se conocía nada de la fisiología celular ni sus procesos de división. Cuando se conocieron tales procesos, los trabajos de Mendel adquirieron la dimensión merecida. Algo similar ocurrió con Einstein y sus teorías.

En biología no existe ni una sola ley. Dada la diversidad de seres vivos, resulta imposible encerrar en leyes unos principios que sean válidos para todos ellos. Si reparamos en cuatro especies muy diferentes entre sí, como podemos ser nosotros, un laurel, un helecho y un gusano, no hay leyes de ningún tipo que sean aplicables por igual a estas cuatro especies, salvo el hecho que sus miembros “nacen, crecen, se reproducen y mueren”. Pero esas actividades biológicas no son leyes. Son, eso, actividades comunes a todos los seres vivos.

REPARTO DE CROMOSOMAS EN UNA DIVISIÓN
CELULAR. DESCONOCIDO EN TIEMPOS DE MENDEL

Sin embargo, en biología tenemos múltiples conceptos que se han ido modificando, según crecía el fondo de conocimientos obtenidos con los descubrimientos. El saber biológico está encerrado en conceptos. Un sabio biólogo del siglo XX, (Erns Mayr) escribió una amplia y erudita Historia de la biología contemplándola como una historia de sus conceptos fundamentales. 

A lo largo del siglo pasado, hemos asistido a la formulación y constante revisión de conceptos fundamentales en biología: El concepto de herencia biológica nunca está completo, pero siempre sirve como base de estudios nuevos. El concepto de gen se ha dio enriqueciendo, llenándose de complejidad y desprendiéndose de ideas equivocadas que no hacían más que lastrarlo. Los conceptos de cromosoma o de genotipo son constantes temas de estudio y revisión, apareciendo nuevas formulaciones de los mismos, que nunca se dan como definitivas, pues sabemos que nuevos descubrimientos aportarán luces nuevas a esos aspectos del conocimiento.

LA VIDA EN PLENA NATURALEZA.
MUCHO PENDIENTE DE DEFINIR

Por no hablar de conceptos tan complejos como el de selección natural, ecosistema o especie. Digo complejos porque son temas en los que se implican diversas áreas de conocimiento. Por ejemplo, el concepto de especie precisa ser estudiado bajo el aspecto sistemático, morfológico, ecológico, etológico, etc. por ejemplo. Es decir, diferentes áreas de la ciencia han de coincidir en la definición, o consensuar una que satisfaga a todas. Algo similar ocurrió a mediados del siglo pasado cuando diferentes biólogos de diversas especialidades como genetistas, ecólogos, zoólogos y botánicos entre otros, compendiaron una teoría sintetizadora de la evolución. (Se le llamó “sintética” por causas de mala traducción). En estos casos, se tiende a llegar a conceptos que estén conformados por diversos aspectos de la ciencia y que siempre puedan ser revisados.

Un concepto siempre cuestionado, nunca estable, es el de “especie biológica”. Ya Aristóteles definió la especie. Desde entonces, múltiples intentos de definición se han ido sucediendo, añadiendo en cada época los conocimientos aportados por descubrimientos que se iban produciendo. No hay una definición de especie que satisfaga a la totalidad de la comunidad científica biológica. Hablo de seres pluricelulares, si quisiéramos incluir en la definición a los procariotas, tendríamos mayores dificultades, a veces insalvables.

Existen entidades biológicas, como hábitat, especie o selección, que para los biólogos son muy intuitivas, aunque aún no se ha encontrado una definición que sea satisfactoria para la comunidad científica en general.

Entradas relacionadas: